1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/*
* Usurpation – wearable device udp packet handling
*
* Copyright (C) 2019 Gediminas Jakutis
* Copyright (C) 2019 Ramūnas Mažeikis
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; version 2.1
* of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <ESP8266WiFi.h>
#include <WiFiUdp.h>
#include "device_network.h"
#include "utils.h"
#include "tlv.h"
static struct netstate {
WiFiUDP udp;
char udppacketbuffer[MTU];
char *udppacketcursor;
IPAddress daemon_ip;
bool acquired;
} state;
static void udp_init_packet_expaddr(IPAddress ip, const int port);
void udp_init(const int port)
{
state.udp.begin(com_port);
}
void udp_init_packet(const int port)
{
state.udp.beginPacket(state.daemon_ip, port);
memset(state.udppacketbuffer, 0, sizeof(state.udppacketbuffer));
state.udppacketcursor = state.udppacketbuffer;
}
void udp_push(const void * const data, const size_t size)
{
memcpy(state.udppacketcursor, data, size);
state.udppacketcursor += size;
}
int udp_flush(void)
{
state.udp.write((const uint8_t *) state.udppacketbuffer, state.udppacketcursor - state.udppacketbuffer);
return state.udp.endPacket();
}
size_t udp_get_data(char *buf, size_t size)
{
size_t ret;
if ((ret = state.udp.available())) {
state.udp.read(buf, size);
}
return ret;
}
void discover_client(const int port)
{
IPAddress bcastip(255, 255, 255, 255);
char buffer[128] = {0};
struct tlv field;
struct tlv_packet pack;
size_t expected_s;
tlv_init(&field, HEARTBEAT);
field.data = strdup(heartbeat_device);
field.head.size = sizeof(heartbeat_device);
tlv_packet_init(&pack);
tlv_pack(&pack, &field);
tlv_packet_finalize(&pack);
tlv_destroy(&field);
do {
udp_init_packet_expaddr(bcastip, port);
udp_push(pack.data, pack.cursor + 1);
udp_flush();
delay(5);
expected_s = sizeof(field.head) + sizeof(heartbeat_server);
while (state.udp.parsePacket()) {
if (state.udp.available() >= expected_s) {
state.udp.read(buffer, sizeof(buffer));
tlv_get(buffer, &field, NULL);
if (field.head.type == HEARTBEAT && !(strcmp(heartbeat_server, field.data))) {
state.daemon_ip = state.udp.remoteIP();
++state.acquired;
}
}
}
delay(95);
} while (!state.acquired);
tlv_packet_destroy(&pack);
}
IPAddress *get_daemon_address(void)
{
IPAddress *ret;
if (!state.acquired) {
ret = new IPAddress(0, 0, 0, 0);
} else {
ret = new IPAddress(state.daemon_ip);
}
return ret;
}
static void udp_init_packet_expaddr(IPAddress ip, const int port)
{
state.udp.beginPacket(ip, port);
memset(state.udppacketbuffer, 0, sizeof(state.udppacketbuffer));
state.udppacketcursor = state.udppacketbuffer;
}
|